

ELEC S411F (2020/21)

Electronic and Computer Engineering Project

Final Report

RISC-V Simulator

Project number: A03

Student name Chan Man Hei

Supervisor: Angus Wong

Submission Date: 13/6/2021

Declaration of Originality

I, Chan Man Hei, declare that this report and the work reported herein was composed

by and originated entirely from me. This report has not been submitted in any form

for another degree or diploma at any university or other institute of tertiary education.

Information derived from the published and unpublished work of others has been

acknowledged in the text and a list of references is given in the reference section.

 [8/6/2021]

Abstract

RISC-V is an open standard instruction set architecture (ISA) based on established

reduced instruction set computer (RISC) principles. It was designed to support

computer architecture research and education, but which they now hope will also

became a standard free and open architecture for industry implementations. So, I am

going to develop the simulator to simulate the instruction of RISC-V and provide a

good performance and good visualization of the processor.

One of the main goals of this simulator was to be easily extensible and modifiable. To

achieve this objective, the original design was very simple and clear, with the use of

naive techniques and a source code designed for simplicity.

In this paper I am going to show how the simulator work and what the simulator can

do. By adding all the instruction of RISC-V architecture and coding the function,

when the simulator read the instruction it will execute the function and print the

information.

TABLE OF CONTENTS

1. Introduction .. 5

1.1 Project Objectives .. 6
1.2 Organization of the Report ... 7

2. Background .. 8
2.1 RISC-V Architecture .. 8
2.2 Executable and Linkable Format (ELF) .. 10

3. Design .. 12
3.1 Disassembler .. 13
3.2 Simulator .. 16

4. Implementation .. 17
4.1 Read Elf ... 18
4.2 Get Data Type .. 18
4.3 Decode Type .. 20
4.4 Get Type Instruction ... 20
4.5 Handle Type ... 21
4.6 Dump To Json .. 22
4.7 The New Instruction .. 23

5. Results and Evaluation ... 24
5.1 Execute the instruction ... 24
5.2 Dump to Json File .. 25
5.3 Edit Elf File .. 26

6. Conclusion and Further Work .. 28
7. References .. 29

1. Introduction

RISC-V is an open standard instruction set architecture (ISA) based on established

reduced instruction set computer (RISC) principles. Unlike most other ISA designs,

RISC-V ISA is available under an open source license, and there are no royalties to

pay. RISC-V hardware is available from a number of firms, open source operating

systems that support the instruction set are available, and certain prominent software

toolchains support the instruction set.

RISC-V ISA include architecture-neutral design, load-store architecture, simpler bit

patterns for CPU multiplexers, IEEE 754 floating point, and storing the most

significant bit in the set position to speed up sign extension. The instruction set has a

wide range of applications. The basic instruction set is a fixed-length 32-bit natural

alignment instruction, however the ISA provides for variable-length extensions,

allowing for any number of 16-bit packet lengths for each instruction. A subset

supports small embedded systems, personal computers, supercomputers with vector

processors, and warehouse-scale 19 inch rack-mounted parallel computers.

The aims of this project are developing a RISC-V simulator and add some new

instruction. When the simulator is executing user can type the RISC-V instruction.

Then, the program will start to simulate the instruction and print the program

counter. Then, the simulator can be read the instruction of ELF file and run the

instruction of RISC-V architecture and read the instruction of ELF file. Finally, the

simulator can execute the newly developed instruction for special using. User can

change the content of function easily.

1.1 Project Objectives
1) Develop a simulator that can encode and execute the RISC-V instruction:

To begin, gather all of the instructions in the RISC-V architecture and determine

their kind. Also, be familiar with the function and properties of the instruction.

Then, for each type of instruction, build a function. Finally, finish each

instruction's substance.

It is critical for the simulator; if the simulator requires additional function, this

section should be implemented first.

2) Read an ELF file and translating the binary code to instruction and execute it:

First, the simulator should read each line of the elf file format. Second, the

function will capture each instruction's binary number. Third, it will use the final

seven digits of the instruction to determine the type and retrieve the instruction.

Finally, call the execute function to execute it.

The amount of instructions is usually rather considerable. The user always saves

the instructions in a text file. As a result, a scanner for text files is required in the

simulation.

3) Create a new instruction to let user have a flexible command set.

We'll need a new instruction to make the simulator extendable and modifiable. At

the original type, the new instruction should be different. As a result, a new type

should be created to handle the new instruction.

It should be simple to extend or alter the new instruction. As a result, it should be

brief. I'm going to follow the original instructions and employ the procedure. It

has the potential to improve code consistency.

1.2 Organization of the Report
The simulator's objectives are to encode and execute RISC-V instructions, read an

ELF file, and generate new instructions. Learning the RISC-V architecture requires a

long time in order to fulfill the goals.

The first challenge is to plan the simulator's architecture. The simulator should be able

to receive and execute the four different types of instructions. It should provide a

method to handle the type and retrieve the get type function instruction. Also, have a

method to decode the instruction execution.

The second challenge is that there are numerous instructions, many of which I am

unfamiliar with. It should do several tests to ensure that the instruction function is

correct.

The third challenge is that I am not very familiar with the ELF file format. The ELF

file format is a text-based file format. An ELF file is divided into two sections: the

ELF header and the file data. I should be able to convert the data to ELF format.

The paper is structured in the following sections: Section 2 depicts background of the

simulator, Section 3 show the design of the simulator, Section 4 shows the

implementation of simulator, Section 5 show the result and evaluation, Section 6

show the conclusion and further work.

2. Background

In this part, I am going to explain the background information of the simulator. I am

going to show the concept of the RISC-V architecture and ELF file format.

2.1 RISC-V Architecture
A RISC-V ISA is made up of a basic integer ISA that must be included in any

implementation, as well as optional extensions to the base ISA. Except for the lack of

branch delay slots and support for optional variable-length instruction encodings, the

base integer ISAs are very similar to those of early RISC processors.

A base is carefully limited to a minimum set of instructions sufficient to provide a

reasonable target for compilers, assemblers, linkers, and operating systems (with

additional privileged operations), and thus serves as a useful ISA and software

toolchain "skeleton" around which more customized processor ISAs can be built.

RISC-V is a family of related ISAs, of which there are now four basic ISAs, despite

the fact that it is more practical to refer to it as the RISC-V ISA. The width of the

integer registers and the matching size of the address space, as well as the number of

integer registers, define each base integer instruction set.

The RISC-V architecture is modular, with optional basic components and optional

extension pieces. Industry, the scientific community, and educational institutions

collaborated to create the ISA foundation and its expansions. Instructions, control

flow, registers, memory and addressing, logical operations, and auxiliary equipment

are all specified in the base address. A simplified general-purpose computer with

comprehensive software support, including a general-purpose compiler, may be built

from a single basis. Standard extensions are intended to function with all standard

bases and are not incompatible with one another.

There are four core instruction formats (R/I/S/U), as shown in Figure 2.1. All are a

fixed 32 bits in length and must be aligned on a four-byte boundary in memory. An

instruction-address-misaligned exception is generated on a taken branch or

unconditional jump if the target address is not four-byte aligned.

To make decoding easier, the RISC-V ISA preserves the source (rs1 and rs2) and

destination (rd) registers in the same place in all formats. Except for the 5-bit instant

used in CSR instructions, immediate are usually sign-extended and crammed into the

instruction's leftmost available bits to save hardware complexity. To accelerate

sign-extension circuitry, the sign bit for all immediate is always in bit 31 of the

instruction.

 Figure 2.1

2.2 Executable and Linkable Format (ELF)

The ELF file is a common standard file format for executable files, object code,

shared libraries, and core dumps. The design of ELF isn't restricted to a single

processor, instruction set, or hardware architecture. It is flexible, extensible, and

cross-platform. It supports different endiannesses and address sizes, so it does not

exclude any particular or instruction set architecture.

An ELF file has two pieces, as you can see from the description above: an ELF header

and file data. A program header table describing zero or more segments, a section

header table describing zero or more sections, and data referred to by entries from the

program header table and the section header table make up the file data section. Each

segment includes information required for the file's run-time execution, whereas

sections include critical data for linking and relocation. This is shown schematically

in Figure 2.2.

Figure 2.2

The ELF header is 32 bytes long and indicates the file's format. It begins with a

four-byte sequence that begins with 0x7F and ends with 0x45, 0x4c, and 0x46, which

correspond to the characters E, L, and F. The header also specifies if the file is in

32-bit or 64-bit format, whether it utilizes little or big endianness, the ELF version,

and the operating system for which the file was produced so that it can communicate

with the appropriate application binary interface (ABI) and CPU instruction set.

The program header shows the segments used at run-time and tell the system how to

create a process image. The header from Listing 2 shows that the ELF file consists of

9 program headers that have a size of 56 bytes each, and the first header starts at byte

64.

The program header table of an executable or shared object file is an array of

structures, each specifying a segment or other information needed by the system to

prepare the program for execution. As described in 'Segment Contents,' an object file

segment has one or more parts. Only executable and shared object files benefit from

program headers. The ELF header's e_phentsize and e_phnum members allow a file to

choose its own program header size.

The section header table of an object file allows you to locate all of the file's sections.

As stated below, the section header table is an array of Elf32_Shdr or Elf64_Shdr

structures. The index of the section header table is a subscript into this array. The byte

offset from the beginning of the file to the section header table is given by the e_shoff

component of the ELF header. e_shnum usually indicates the number of items in the

section header table. e _hentsize returns the size of each item in bytes.

3. Design

Figure 3.1

In this section, I am going to show the design of the simulator. The design of the

simulator is divided by two part disassembler and simulator. The simulator is use to

decode the instruction of disassembler. In Figure 3.1, it shows the design of simulator

step by step. And I am going to show the detail design of them.

This chapter will introduce the preliminary design of the whole system. It will be

divided into 7 sections. Section 3.1.1 will show the read elf function. Section 3.1.2

will show get data function. Section 3.1.3 will show decode type function. Section

3.1.4 will show get type instruction function. Section 3.2.1 will show the handle type

function. Section 3.2.2 will show the dump to json function. At the end, the new

instruction will be presented in Section 3.2.3.

3.1 Disassembler

3.1.1 Read elf

The first function is read elf, the read elf function is use to receive the data. Each of

the 32 bits will be assign to one group and pass it to the get data function.

The main purpose of the function is use to read elf file. It is important to the simulator

because of when we doing simulation, there will have a lot of instruction. So, it

should be have a file to store them all. Then, the read elf function should be

implementing.

When the simulator gets the elf file, it will enter to the get elf function. The function

will scan it line by line. Each 32 bits will pass it to get data function.

3.1.2 Get data

The second function is get data. It is use to get the type of instruction. And pass the

type and the 32bits data to decode type function.

The purpose of this function is use to find the type of function and pass to the

decode type function. Because of the decode type function should be know the type

of instruction first. So, this function should be implementing.

When the 32 bits data passing to get data function, the last 7 bits of data is the

objcode. So, in these 7 bits we can find out the type of instruction. And pass it to

decode type function.

3.1.3 Decode type

The third function is decoding type function. This function is use to decode the data

by their type. And there are 6 types of decode type function (decodeTypeB,

decodeTypeI, decodeTypeS, decodeTypeR, decodeTypeU, decodeMagic).

The purpose of this function is use to get the information of the data, this data is use

to initial the direction of instruction. Because of this function is use to get the

information of instruction. So, this function should be implementing.

Figure 3.1.3

When the decode type function get the data, it will divide the data to different. In

Figure3.1.3 we can see the distribution of the data. For type B, It will divide to funct3,

r1, r2 and immediate value. For type I, It will divide to funct3, r1, rd and immediate

value. For type S, It will divide to funct3, r1, r2 and immediate value. For type R, It

will divide to funct7, r1, r2, funct3 and rd. For type U, It will divide to rd and

immediate value. The funct3 or funct7 is meaning the function of the instruction and

rd1, rd2, rd is meaning the register number.

3.1.4 Get type instruction

The fourth function is get type instruction function. This function is use to get the

instruction by their code. And there are 6 types of get type instruction function

(getTypeBInstruction, getTypeIInstruction, getTypeSInstruction, getTypeRInstruction,

getTypeUInstruction, getMagicInstruction).

The purpose of get type instruction is use to get the instruction by their type. For the

simulator, it is the important function. Because of get the instruction is the major

function. So, this function should be implementing.

When the data information passes to this function, it will focus on the funct3. By

checking funct3 value with their type, we can get the instruction. The

getTypeUInstruction is special, It use the opcode to get the instruction.

3.2 Simulator

3.2.1 Handle Type

The fifth function is handle type function. This function is use to execute the

instruction. And there are 6 types of handle type function (handleTypeB, handleTypeI,

handleTypeS, handleTypeR, handleTypeU, handleMagic).

The purpose of get type instruction is use to execute the function of instruction. In

this function it needs to specific the function of the instruction and presents it to the

user. The reason of create 6 handle type function is it is easier to manage the

instruction. Because of it is the most important function of the simulator. So, this

function should be implementing.

When the instruction is passes to the handle type function, it will execute the

function. For example the instruction addi a0, a0, -4, it will sum the register a0 value

and -4 together and store back into register a0.

3.2.2 Dump to json

The sixth function is dump to json function. This function is used to store the value

after execution and dump it to the json file. The value includes the operand, offset

and the offset after mapping.

The purpose of dump to json function is. If we don’t have this function, the user can’t

get the information after execution. So, this function should be implementing.

When the handle type function is execute, the dump to json function will execute

parallel. It will follow the handle type function when the execution of handle type

function is done. Than it will call the dump to json function the write the result to the

json file.

3.2.3 The New Instruction

Finally, the seventh is adding the new instruction. This function is use to create a new

instruction for the RISC-V simulator. And it is dependence on the normal instruction.

The purpose of create the new instruction is let user have a more flexible command

set. It can make the simulator more extendable and modifiable.

4. Implementation

In this part, I am going to show the detail of implement the simulator. I will show the

method I use and the example of the simulator.

This chapter will introduce the Implementation of the whole system. It will be divided

into 6 sections. Section 4.1 will show the read elf function. Section 4.2 will show get

data function. Section 4.3 will show decode type function. Section 4.4 will show get

type instruction function. Section 4.5 will show the Handle Type function. Section 4.6

will show Dump to json function. At the end, the new instruction will be presented in

Section 4.7.

4.1 Read Elf
The read elf function is designed to get the data of elf file. To handle the elf file

format the company I work with created a library call “Quantr Dwarf Library”. The

simulator uses this library to read the elf.

When the Simulator is executing, user can put their path to the simulator. Then the

simulator will use the Quantr Dwarf Library to translate to the binary no.

File file = new File(TestFile1.class.getResource("riscv_simulator/data.elf").getPath());

Simulator.main(new String[]{"--elf", file.getAbsolutePath(), "-m", "1GB", "-s", "0x0000000",

"-d", "dump.json", "--map=0x0-0x2fffff=0x8000000", "--init", "init.txt"});

Those code are telling the simulator that the path of the simulator and use what

information to initialize the simulator. After initialize the simulator, each 32 bits will

pass it to get data function to decode.

4.2 Get Data Type
The get data function is designed to decode the data of read elf function get. By the

RISC-V architecture, we can know that the last 7 bits of 32 bits instruction data is their

opcode. And this opcode can be translated to the type of instruction.

https://gitlab.com/quantr/toolchain/quantr-dwarf-library
https://gitlab.com/quantr/toolchain/quantr-dwarf-library

For getting the type of the instruction, I put the opcode case to the hashmap.

op32map2.put(0b1100011, "decodeTypeB"); // type B

op32map2.put(0b0000011, "decodeTypeI"); // type I

op32map2.put(0b0010011, "decodeTypeI"); // type I

op32map2.put(0b1110011, "decodeTypeI"); // ecall & ebreak

op32map2.put(0b0100011, "decodeTypeS"); // type S

op32map2.put(0b0110011, "decodeTypeR"); // type R

op32map2.put(0b0110111, "decodeTypeU"); // type U

op32map2.put(0b0010111, "decodeTypeU"); // type U

op32map2.put(0b1111111, "magic");

And use the code String instructionType = getType(b & 0x7f); can get the last 7 bits of

the data. Because if the 32 bits long data using and gate with 11111112 (7f16), we can

confirm we only get the last 7 bits.

public static String getType(int b) throws Exception {

if (op32map2.containsKey(b)) {

 return op32map2.get(b);

} else {

 return "WrongType";

}

}

And compare them to the hashmap to get the type of instruction. For example using

11101011 00110011 11101011 00110011 and 1111111 can get 0110011. Then put it

to the get type function, it will return string decodeTypeR.

4.3 Decode Type
The decode type function is designed to get the information of the data, this data is

use to initial the direction of instruction. Each of the type have different decode

method. So, I created 6 Decode Type function. (decodeTypeB, decodeTypeI,

decodeTypeS, decodeTypeR, decodeTypeU, decodeMagic).

To get the right data for the instruction, I will use shifting to get the right position.

For example, the type R can be divided to:

public Line decodeTypeR(int arr[]) {

 int rd = (arr[1] & 0x0f) << 1 | (arr[0] >> 7);

 int rs1 = (arr[2] & 0x0f) << 1 | (arr[1] >> 7);

 int rs2 = (arr[3] & 0x01) << 4 | (arr[2] & 0xf0) >> 4;

 int funct3 = (arr[1] & 0x70) >> 4;

 int funct7 = (arr[3] >> 1);

After those coding, we can get the funct7, rs2, rs1, funct3 and rd value. It means we

already get all of the instruction information. addi a0, a0, -4

For example we get the data 11111111110001010000010100010011 (addi a0, a0, -4).

In this case, the funct7 is 1111111, r2 is 11100, r1 is 01010, funct3 is 000, rd is 01010

and opcode is 0010011. Then the other can be using those data to decode the

instruction.

4.4 Get Type Instruction
The get type instruction function is designed to get the instruction by their code. And

there are 6 types of get type instruction function (getTypeBInstruction,

getTypeIInstruction, getTypeSInstruction, getTypeRInstruction, getTypeUInstruction,

getMagicInstruction).

In this moment, we already get the type of instruction and we will use their type of

get type instruction function. The example on 4.3 shows that the opcode is 0010011

and funct3 is 000.

if (opcode == 0b0000011) {

 if (funct3 == 0) {

 instruction = "lb";

…

)

if (opcode == 0b0010011) {

if (funct3 == 0) {

instruction = "addi";

In this case, we can see that the instruction is addi. And after checking the instruction,

then it will return the variable instruction.

4.5 Handle Type
The handle type instruction function is designed to execute the instruction. And

there are 6 types of handle type function (handleTypeB, handleTypeI, handleTypeS,

handleTypeR, handleTypeU, handleMagic).

This function is use to specific function of instruction. So, each of the instruction

have their own coding.

if (line.instruction.equals("addi")) {

 if (rs1.equals("zero")) {

 registers.get(rd).setValue(line.imm);

 } else {

 long_val = registers.get(rs1).value + line.imm;

 registers.get(rd).setValue(long_val);

 }

It is the addi function example. It shows that the value of rs1 + the immediate value.

Continue with the example on 4.3, the data 11111111110001010000010100010011

(addi a0, a0, -4) is means adding value of register a0 and -4 togeter and store it to

register a0.

4.6 Dump To Json
The dump to json is used to let user check the information after execution. The value

includes the operand, offset and the offset after mapping.

HashMap<String, Object> map = new HashMap();

map.put("bytes", ins);

map.put("registers", registers);

map.put("memoryOperands", memory.lastOperands);

JsonElement jsonElement = new Gson().toJsonTree(map);

arr.add(jsonElement);

Those code is use to put the data to the hashmap, and put the data in hashmap to the

dump.json file.

4.7 The New Instruction
The new instruction is design to have a special function the RISC-V ISA doesn’t have.

And the method is based on the normal instruction.

private void handleMagic(int arr[], Line line) throws Exception {

 String rd = Registers.getRegXNum32(line.rd);

 String rs1 = Registers.getRegXNum32(line.rs1);

 long long_val;

 System.out.println("hello "+line.instruction);

 if (line.instruction.equals("magic")) {

 long_val = registers.get(rs1).value + 2;

 System.out.println("a : " + registers.get(rs1).value);

 System.out.println("a + 2 : " + long_val);

 registers.get(rd).setValue(long_val);

 }

 modifyPC();

}

This is the source code of decoding the new instruction. This instruction is going to

add two in to their original register. Because when we use the simulator there are

some operate is the value added by two.

5. Results and Evaluation

This chapter will show the result and evaluation of the simulator. It will have 4

sections. Section 5.1 will show the execution of the instructions. Section 5.2 will

show the function dump to json file. Section 5.3 will show how to edit the elf file. At

the end, the new instruction will be presented in Section 5.4.

5.1 Execute the instruction
To show the executed instruction, I use the elf file to store the instruction and use the

simulator to execute it. And compare the executed instruction and their register to the

original elf file, as shown in Figure 5.1.

Figure 5.1

As the following instruction, the first instruction is j into register 8000c. Then the

simulator will print the next register and run the binary code (30047073) in the next

register and translate to an instruction (csrci mstatus,8).

And we can see that in Figure 5.1 the CMD is showing the instruction on elf file. It

can be comparing with the simulator and confirm that there are no error occus.

5.2 Dump to Json File
Dump to json file function will generate the dump.json file to store the operand, offset

and the offset after mapping, as shown in Figure 5.2

Figure 5.2

When the simulator is executed, the dump to json function will execute parallelly. It

will start to write the result to the json file.

5.3 Edit Elf File
First, I use the riscv-none-ember-readelf -S command to show the section header, as

shown in Figure 5.31.

Figure 5.31

The instruction is store in .text and start at offset 0x1240.

Then, use the binary editor to change the data. The data of first instruction is

30047073, and I change it to FFFFFFFF, as shown in Figure 5.32 and Figure 5.33.

Figure 5.32 Figure 5.33

Figure 5.34

The original data is 30047073; register is 0x15c and instruction csrci mstatus,8. Then

the data change to ffff and register divided to two register 0x15c and 0x15e and they

can’t be translating to the instruction. It is because the ffff is not the type of RISC-V

architecture.

5.4 New instruction

Figure 5.4

In Section 5.3, it shows how to change the value of the elf file. It is use for the new

instruction. In Figure 5.4, It shows the new instruction is success to execute. When we

execute that instruction the simulator will print the value of the register and the value

of register after it added by two.

6. Conclusion and Further Work

The simulator can decode the elf file and provide a simulation result. And the new

instruction is already created. That means the simulator is meet the targets of project

objectives. For now, the simulator is a functionable simulator. And it can easily

extensible and modifiable.

In creating the simulator, it has a lot of knowledge I should learn. It takes a lot of time

to fulfill the basic knowledge should use in the simulator. And the most challenging is

the Handle Type function, it has a lot of try and fail when I modified the function of

instruction.

In further, I hope the new instruction can have more function. For now, I created a

type for new instruction. But in this type, it only has one instruction. So, it can be

creating more instruction of this type. And make the simulator have more function.

7. References

https://linuxhint.com/understanding_elf_file_format/

https://riscv.org/

https://linuxhint.com/understanding_elf_file_format/
https://riscv.org/

	1. Introduction
	1.1 Project Objectives
	1.2 Organization of the Report

	2. Background
	2.1 RISC-V Architecture
	2.2 Executable and Linkable Format (ELF)

	3. Design
	3.1 Disassembler
	3.1.1 Read elf
	3.1.2 Get data
	3.1.3 Decode type
	3.1.4 Get type instruction

	3.2 Simulator
	3.2.1 Handle Type
	3.2.2 Dump to json
	3.2.3 The New Instruction

	4. Implementation
	4.1 Read Elf
	4.2 Get Data Type
	4.3 Decode Type
	4.4 Get Type Instruction
	4.5 Handle Type
	4.6 Dump To Json
	4.7 The New Instruction

	5. Results and Evaluation
	5.1 Execute the instruction
	5.2 Dump to Json File
	5.3 Edit Elf File
	5.4 New instruction

	6. Conclusion and Further Work
	7. References

