Fouu MRS g ey

THE OPEN UNIVERSITY OF HOMG KONG
SCHOOL OF SCIENCE AND TECHNOLOGY

ELEC S411F 2020/21

Electronic and Computer Engineering Project

Final Report

Implementation of a New
Executable and Linkable Format for RISC-V

Project Number: AO01
Student Name: Law Tsz Wang Leslie (12419115)
Supervisor: Dr. Angus Wong
Submission Date: 13 June 2021

ELEC S411F Final Report 12419115

Declaration of Originality

I, Law Tsz Wang Leslie, declare that this report and the work reported herein was composed
by and originated entirely from me. This report has not been submitted in any form for another
degree or diploma at any university or other institute of tertiary education. Information derived
from the published and unpublished work of others has been acknowledged in the text and a

list of references is given in the reference section.

13 June 2021

Page 2 of 20

ELEC S411F Final Report 12419115

Abstract

Since RISC-V is becoming a revolutionary instruction set architecture (ISA), many technology
companies have developed a strong interest in this ISA, and then invest resources for

development. RISC-V will change the ecology of the entire computer architecture industry.

This project is to design a lightweight and dynamic executable and linkable format (ELF) file
in order to have a more efficient file linking and execution. Then, implement the modified ELF

file to RISC-V environment, to better support the future RISC-V CPU and OS development.

The GCC file is chosen to be optimized for testing that modify an ELF file can get improvement
when building a RISC-V operating environment. The result showed that the optimized GNU
C Compiler (GCC) file can compile almost 10% faster than the original one. It also means that

the ELF file act as a main character between operating system and ISA.

Page 3 of 20

ELEC S411F Final Report 12419115

Table of Content

L IRIPOAUCHION. ...ttt e beeenbeennee 6
1.1 PrOJeCt ODJECLIVES ...uviiiiiieciieeeiee ettt ettt ere e et e e e aae e e b e e sareeesaseeennseeenaeas 6
1.2 Organization 0f the RePOTt........cccciiiiiiiiiiiiicie e 6

2 LIterAtUre REOVIEW........cc..oiiiiiee ettt 7
2.1 Compete the X86 and ARMcoooiiiiiiiiiiiieecee ettt 7
2.2 RISC-V Emulator Development..........c.ccocviieiiieiiiieeieecie et 7
23 Low Performance Emulator............ccooioiiiiiiiiiiii e 8
2.4 GOC COMPILET ..ottt ettt ettt e st e et esabeenbeessseensaeenseenne 8

3 MENOAOLOZY ...t 9
3.1 Read and Write ELF flle.....ccc.ooiiiiiii e 9
3.2 GNU Compiler TOOIChAIN.cceiiiieiiieciie et eeereeea 9
33 64-bit RISC-V Linux on QEMU......ccccociiiiiiiiiiiiiiiiienteeeeseeeete e 10

4 IMPLEMMENIALION ... ettt ettt e 11
4.1 Read ELF on Terminal..........coooiiiiiiiiiiiii e 11
4.2 Read and Write ELF Program............cccceeviiiiiiieeiiieeieeceeeee e 12
43 Section Header in ELF Files......cocoiiiiiiiiiiiiiceeeee e 14
4.4 Building RISC-V ENVIFONMENL.........ccciiiiiieriieeiieniieeieesiee et see e seve e sneeaee s 15
4.5 COMPILE GCC ...ttt ettt et et e s abe b e s sbeeseeenaeenne 16

S ReSUlts ANA DISCUSSTONccuveeeiiiieeiiieeeie ettt e e ssae e e easeeenaneas 17
5.1 GCC Compiling ReSUILt.......cccoiiiiiiieciiiecie et 17

O COMCIUSTON ...ttt ettt e e e enees 18

7 REICE@IICES ...ttt 19

8 APPEIAIX ...t aneas 20

Page 4 of 20

ELEC S411F Final Report 12419115

List of Figures

Figure 4.1 Result on “readelf” of GCC 11
Figure 4.2 Java program and result — Read ELF 12
Figure 4.3 Java program and result — Write ELF 13
Figure 4.4 Cover page of “64-bit ELF Object File Specification” 13
Figure 4.5 First 5 section headers of GCC 14
Figure 4.6 Help instruction and update process of Homebrew 15
Figure 4.7 Content of the GNU Compiler Toolchain 15
Figure 4.8 Screenshot when compiling GCC 16
List of Tables
Table 4.1 ELF-64 Data Types 13
Table 4.2 ELF-64 Header Structure 14
Table 5.1 Compile Time Result 17

Page 5 of 20

ELEC S411F Final Report 12419115

1 Introduction

As the technology nowadays becomes more complex and more connected, the interoperability
between inventors and consumers has become more important. Global standards can make the
interoperability easier and more convenient, thereby driving innovation at the basic platform

level.

RISC-V is a free and open instruction set architecture (ISA) which still under development.
RISC-V means the fifth edition of reduced instruction set computer (RISC) architecture. It is
driven through open standard collaboration of global developers, and aims to achieve freedom
of design in all domains and industries, and consolidate the strategic foundation of

semiconductors.

Executable and Linkable Format (ELF) is an standard, flexible and cross-platform object files
participate in program linking and execution which is a binary file format commonly found in
in Unix-like systems. Since the bit “zero-one” in computer system are like the DNA molecules
of the organism, ELF should be the general structure of the cell. ELF supports different
endianness and address-sizes, and not requires specific CPU or ISA. Therefore, implementing

an optimized ELF may improve the development for RISC-V.
1.1 Project Objectives

This project is aims to modify ELF files so as to have a more efficient file linking and execution
in RISC-V environment, and hopefully can participate in a very small little part of the RISC-

V development.
1.2 Organization of the Report

The report is begin with section 2, the background observation of RISC-V and ELF. Some
literature will be reviewed for reference on the further work on RISC-V environment. After
understanding the development of RISC-V, section 3 is the methodology is listing in detail to
clearly describe what will be done. Section 4 is the working process and some screenshot of
the work. The testing and work result of section 4 and the further discussion is showed in

section 5. The section 6 is the conclusion of the project.

Page 6 of 20

ELEC S411F Final Report 12419115

2 Literature Review

RISC-V is an ISA which not optimised for any particular target, so it is suitable for all
computing purposes. It is also a simple load-store architecture which can be divided into two
parts, base ISA and optional extensions which means RISC-V is restricted to contain minimal

instructions set but also support extensive customisation.

2.1 Compete the x86 and ARM

Comparing to X86 and ARM, the world’s most famous ISA for PC and mobile. RISC-V are
free and no need to pay for the IP license fee [3]. It is simpler and smaller than other ISAs, and
support modularisation with multiple standard extensions. The high stability due to fixed base
ISA and first extension let the developers only need to update or change the extensions. And,
due to high extensibility, specific functions can be added by extensions. So, RISC-V may have
a good future to compete the x86 and ARM.

In the 1980s, chip size and processor design complexity were the main limiting factors, while
desktop computers and servers completely dominated the computing industry [1]. Today,
energy efficiency are the main design constraints, and the computing industry is very different:
the growth of smartphones or tablets running ARM exceeds that of desktops or laptops running
x86. In addition, the traditional low-power ARM is entering the high-performance computer
market, while the traditional high-performance x86 is entering the low-power mobile device
market. Therefore, the ISA performance and energy efficiency is becoming more and more

important.
2.2 RISC-V Emulator Development

RISC-V is an open and free ISA, originally developed by the University of California, and now
maintained by the RISC-V Foundation, with a few companies supporting its development [4].
It is a small RISC-based architecture that divided into multiple modules supporting floating-
point calculations, vector operations and atomic operations. Each module focuses on different

future computing goals, such as IoT embedded devices and cloud servers.

The rapid growth and adoption of RISC-V is attracting worldwide attention. So far, Linux

kernel, GCC, Clang all support it. However, the performance of all current RISC-V simulators

Page 7 of 20

ELEC S411F Final Report 12419115

is very poor. Having a high-performance RISC-V emulator suitable for common architectures,
x86 and ARM, in order to simplify software deployment, not only promotes its adoption and
testing, but also showcases it as a useful virtual architecture. A way to implement a high-
performance simulator is to use dynamic binary conversion (DBT), a technique for

dynamically selecting and converting code regions during simulation [4].

This technology has been used to implement fast virtual machines (VM), simulators, debuggers,
and high-level language VMs [4]. The DBT engine usually interprets the code first, and then

after translating all the hot areas, most of the time is spent executing the translation area.
2.3 Low Performance Emulator

In ISA design, RISC-V has not reached a mature and stable state until now. Physically, there
are several open source RISC-V CPU designs available. Although open source design can
enable mass production, this type of design is still under research and experimentation, so there
are currently few platforms that implement RISC-V architecture [4]. It usually takes some time
to realize that the hardware of the new ISA is widely available. Until then, simulation plays a

vital role, it can use the new ISA without a physical CPU available.

The main job of the ISA emulator is to convert client instructions into host instructions. The
goal is to make the host execute the client's instructions. Although there are already some
RISC-V simulators available, such as Spike and QEMU, they cannot achieve close to native
performance, which limits their performance, so they are usually used in situations where

performance requirements are not high.
2.4 GCC Compiler

GNU Compiler Collection (GCC) is the traditional compiler for most embedded systems
because it supports many different ISAs on the back end. It supports many embedded
processors and microcontrollers, and its status as the official GNU/Linux compiler is due to
the open source model and support from the GNU/Linux community. Also for RISC-V, it is
the first default compiler available [5].

Page 8 of 20

ELEC S411F Final Report 12419115

3 Methodology

This project is using Java in programming for creating and modify the ELF file. In system
programing, a Java SE Development Kit 16 is used for implementation of the Java platform
function, integrated development environment for Java and other related function in Shell
script. When emulating RISC-V environment, the GNU Compiler Toolchain recommended by

the RISC-V Foundation is the main character.
3.1 Read and Write ELF file

ELF file can be found in any OS. Command line on Windows or Terminal on macOS provide
an easiest way to read the ELF file information of different system or complier file. The
command line program will show the ELF header, section header and program header of the

ELF file. Those information will tells the system how the ELF file creating a process image.

In order to show the above information in the binary form, a simple Java program is needed.
The program can read the byte inside the ELF file, then print out in hexadecimal form which
is easier to read and analysis. This program involves the conversion between the byte of the

file and the binary code, as well as the conversion between binary and hexadecimal string.

As we can read the ELF in customise form, a separate program can also write a whole new
ELF file by converting the information string to hexadecimal code, then convert it to binary

code and write into a newly created file.

3.2 GNU Compiler Toolchain

The RISC-V foundation recommended the RISC-V GNU Compiler Toolchain which is
avalible on Github. This toolchain is the RISC-V C and C++ cross-compiler. It supports two
build modes: a generic ELF/Newlib toolchain and a more sophisticated Linux-ELF/glibc

toolchain.

The original GNU C Compiler (GCC) is developed from the GNU project to create a complete
Unix-like operating system as free software, to promote freedom and cooperation among

computer users and programmers.

Page 9 of 20

ELEC S411F Final Report 12419115

GCC has grown over times to support many different programing languages such as C (gcc),
C++ (g++), Java (gcj) which is now referred to as "GNU Compiler Collection". The GNU
Compiler Toolchain is for developing applications and writing operating systems which
include GCC, GNU Make, GNU Binutils, GNU Debugger (GDB), GNU Autotools and GNU
Bison [2].

3.3 64-bit RISC-V Linux on QEMU

As the project is worked on macOS environment, a QEMU, a generic and open-source machine
emulator, is needed to emulate the RISC-V environment. Booting a Linux on RISC-V QEMU
can create an environment to test the customized ELF file since ELF is widely used in Linux

and other Linux-like system, and Linux is suitable to run on RISC-V ISA.

Page 10 of 20

ELEC S411F Final Report 12419115

4 Implementation

The implementation is doing on a Macbook Pro with macOS 11.4. The test file used is the
GCC file from GNU Compiler Toolchain.

4.1 Read ELF on Terminal

[] ™ Programming — -bash — 158x72

Leslies-MBP:Programming leslielaw$ fusr/local/Cellar/binutils/2.35.1_L/bin/readelf -a gcc
ELF Header:
7f 45 4c 46 02 91 91 @9 00 00 00 00 90 90 90 00
ELFE4
2's complement, little endian
Version: 1 (current)
05/ABI: UNIX - System V
ABI Version: a
Type: EXEC (Executable file)
Machine: Advanced Micro Devices XB6-64
Version: el
Entry point address: @x467ded
Start of program headers: 64 (bytes into File)
Start of section headers: 1845376 (bytes into file)
Flags: a=d
Size of this header: 64 (byte
Size of program heade 56 (byte
Number of program heade
5ize of section headers:
Number of section headers:
Section header string table index: 32

s)
s)

Section Headers:
[Nr] Mame Type r Offset

Size EntSize Link Info Align

NULL Lo

2000000000000000 a]

PROGBITS Lo e

dobooooooo000008 A @ 1
.note.ABI-tag NOTE aopoooaaaa40028c GOBBEZEC
aitfoooaaaa00a2e GOODD000000000808 A '] 4
note.gnu.bul...] NOTE Soooooeaa4BeZac 0BBBEZac
Gatfooonaaa00aZ4 GODDOD0000000808 A '] 4
.gnu. hash GNU_HASH 2000000000400240 00B00240

Lo Y 5 '] 8

DYNSYM f008000000400340 DOBBE340

Lo i Y 6 1 8

STRTAB aopoooaaaa401198 08881198

Gofoooooooonaaee A '] 1
.gnu.version VERSYM oopoo0aaaa401748 00881748
2000000000000132 0OROD00000000002 A 5 a 2
.gnu.version_r VERNEED aofoooaaaa401888 oo001880
2000000000000090 GODOO00000000000 6 2 8
.rela.dyn RELA 2aaa1918

Lo 8

RELA 22001008

Lo

PROGBITS

[)

PROGBITS

abfoaaaaa0000a18

PROGBITS

2000000000000008

PROGBITS

aoaaaaaa00000000

PROGBITS

PROGBITS
B000000000000000
.stapsdt . base PROGBITS
0000000000000001 DODOOOD0D0000008
.eh_frame_hdr PROGEITS
0000000000003714 DOOOOOD0D0000008]
.eh_frame PROGBITS 0000000000427c08 0OBeT7CRO
0000000000012c38 0OOD0000D0000008 A] 8
.gece_except_table PROGBITS 20000000004faB38 DOBFaB38
2000000000000008 A L] a 4
NOBITS 2000000000658 BBGfbSe8
8000000000008 WAT (] @ 8
.init_array INIT_ARRAY 2000000000658 B8GfbSe8
3 B WA]] 8
.fini_array FINI_ARRAY B0000000006TD618 BBEFbHE1S

Figure 4.1

Page 11 of 20

ELEC S411F Final Report 12419115

Figure 4.1 showing that the function readelf can list out all the information of an ELF file,
include ELF header, section header and program header. In the ELF header, the first line
showed the magic byte “7f 45 4c 46 which mean “\x7fELF”. It also showed the class and

version of the ELF format, and the size of the section and program header.

4.2 Read and Write ELF Program

Source | History

Scanning for pr
va.nio. file.Path mpany:mavenproje
5] Building mav ect 0T

readELF64 {

I0Exception {

(

Word 5 00 00 00 46 7D E@
00 00 00 00 00 00 00 40

, Unsigned);

0 00 00 00 00 00 00

00 00 00 00 00 00 00 00

: 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00

00 00 00 00

ign: 00 00 00 00 00 00 00 00

e: 00 00 00 00 00 00 00 00
.print(

00 00 00 0B
00 00 01
00 00 00 00 00 00
= : 00 00 00 00 00 40
sh_offset: 00 00 00 00 00 O 2 70
00 00 00 00 00 00 1C
0 00 00 00
)i 00 00 00 00
, Half); addralign: 00 00 00 00 00 00 00 01

.print(i
= printHex(bytes,

.print():
/tes , Word);

Figure 4.2

Figure 4.2 is the Java program and result of reading ELF files. To read the byte of an ELF file
and print in a right way, the program needs to know the length of each field, for example the
magic byte is an unsigned data type which has a length of 16 bytes. Those figures can be found
on the document called ELF Object File Specification (figure 4.3) by Silicon Graphics. The
document showed the data type, header structure and the detail of each field of information

(table 4.1).

Page 12 of 20

ELEC S411F Final Report 12419115

64-bit ELF Object

File Specification ELF-64 Data Types

Version 2.4 Name Size | Alignment | Purpose
Elf64_Addr 8 8 Unsigned program address
Elf64_Half 2 2 Unsigned small integer
Elf64_Off 8 8 Unsigned file offset
EIf64_Sword 4 4 Signed medium integer
Jim Dehnert
Elf64_Sxword 8 8 Signed large integer

MIPS Technologies /

Silicon Graphics Computer Systems

Name Size | Alignment | Purpose

Caveat: This document represents work in progress. It is incomplete and
subject to change. In particular, lists of constants, sections, and attributes

Elf64_Word 4 4 Unsigned medium integer

are may be incomplete or inaccurate in detail. Reference to the header

files eith and sys/etth is recommended before reliance on the informa- EIf64_Xword 8 8 Unsigned large intcger
tion herein.
Elf64_Byte i iny i
Section 1 Introduction Byt 1 1 Unmgnod (i i T
This document specifies the format of MIPS object files for 64-bit code. Elf64_Section 2 2 Section index (unsigned)
We assume as a basis the documents [ABI32], [ABI32M], and [ABI64].

In addition, Silicon Graphics uses the DWARF debugging information
format as specified in [DWARF]. Information in those documents should
be considered valid unless contradicted here.

Table 4.1

11/3/08 %E SiliconGraphics
ConptrSystens

onputr

Figure 4.3

Source History W B

java.io.File;
java.io.FileOutputStr
a.i0.I0Exception;
java.io.OutputStream;
java.util.Arrays;

writeELF64 {
NIDENT]: [127, 69, 76,
essful (@)
String
File H
OutputStri leOutputStream(z

main(String[] ar IOException {

Addr, Off, Word, Half,
Addr = Off = Sxv
Sword = Word =
25, 70, 0, 0, 0, 0, 0]
Write successful (4)

e_phoff: [64, 0,
Write successful (5)

[-128, -13, 15, o, 0,
.print(; e ssful (6)
_type, Half);
[0, o, o, 0]
hine = : successful (7)
.prin i
Byte(e_machine, Half e_ehsize: [64, 0]
Write successful (8)
e_version = i
.print() e_phents : [56, 0]
on, Word); ful (9)

ntry = ; (10, 0]

.print()i ssful (10)

StringToByte(e_entry, Addr);

phoff =
.print(
shnum: [33, @]
Wri

off);

Figure 4.4

Page 13 of 20

ELEC S411F Final Report 12419115

Figure 4.4 is the Java program and result of writing ELF files. It provides a way to create a
customized ELF file from zero. Same as reading, the program can assign the byte into the

correct position in each header which is following the specification sheet on table 4.2.

ELF-64 Header Structure

Field Name Type Comments

e_identfEl_NIDENT] | unsigned char | See Table 5

e_type Elf64_Half See [ABI32]

e_machine EIf64_Half Machine (EM_MIPS = 8)

e_version EIf64_Word | File format version

e_entry EIf64_Addr Process entry address

e_phoff EIf64_Off Program header table file offset

e_shoff Elf64_Off Section header table file offset

Field Name Type Comments

e_flags EIf64_Word | Flags — see Table 6

e_ehsize EIf64_Half ELF header size (bytes)

e_phentsize EIf64_Half Program header entry size

e_phnum Elf64_Half | Number of program headers

e_shentsize Elf64_Half Section header entry size

e_shnum Elf64_Half Number of section headers

e_shstrndx Elf64_Half Section name string table sec-
tion header index

Table 4.2

4.3 Section Header in ELF Files

[] ™ Programming — -bash — 158x14

[Nr] Mame Type Address Offset
Size EntSize Flags Link Info Align
NULL 0000000000000000 0ODODG00
200000000000000]]]
PROGBITS 2000000000400270 0OBBB278
0000000000000000 A]] 1
.note.ABI-tag NOTE 200000000040028c BOBBBZEC
0000000000000020 0O000000000000G0 A]] 4
.note.gnu.bul...] NOTE 200000000040020c BOGBEZac
2000000000000024 OODDOO0DO0000000 A @ @ 4
.gnu. hash GNU_HASH 00000000004002d0 0ODBBZ40
000000000000006c 0OOO0000D00000G0 A 5] 8
[5] .dynsym DYNSYM CRORDREEAATEILD BOGEEILD
0000000000000e58 0O00000000000018 A [1 8

Figure 4.5

Figure 4.5 showing the first 5 fields in the section header. Each field is containing the content
to be execute. Changing their order can make the data mapping in memory more efficient. If
deleting the unused section, the ELF file can be more light-weighted. After analysis the section
header of the GCC file, the writing ELF file program can be used to create the optimized ELF
file. The new GCC file is ready for replacing the original one.

Page 14 of 20

ELEC S411F Final Report 12419115

4.4 Building RISC-V Environment

Before building a RISC-V environment, Homebrew is needed which is a free and open-source
software package management system that simplifies the installation of software on macOS as
well as Linux. Figure 4.6 showing the help instruction and update process of Homebrew. Then,
installing the RISC-V GNU Compiler Toolchain using Homebrew. Figure 4.7 showing the

content of the toolchain.

[] ™ Programming — -bash — 158x33

Leslies-MBP:Programming leslielaw$ brew help
Example usage:

brew search TEXTI/REGEX/

brew info [FORMULAICASK.

brew install FORMULAICASK. ..

brew update

brew upgrade [FORMULAICASK

brew uninstall FORMULAICASK

brew List [FORMULAICASK...]

Troubleshaoting:
brew config
brew doctor
brew install --verbose --debug FORMULAICASK

Contributing:
ate URL [--no-fetch]
t [FORMULAICASK. ..]

Further help:
brew commands
brew help [COMMAND]
man brew

& rogramming leslielaw$ brew update
Updated 1 top (homebrew/core).
Updated Formulae
k3d weechat

You have 9 outdated formulae installed.

or list them with brew outdated.
Les1ies-MBP:Programming leslielaws

Figure 4.6

™ riscv-gnu-toolchain — -bash — 158x53

leslielaw$ cd riscv-gnu-toolchain
Les1ies-MBP:riscv-gnu-toolchain leslielaws 1s
LICENSE build-gec-newl ib-stagel config.log install-newlib-nano riscv-dejagnu scripts
Makefile build-gec-newlib-stage2 config.status e riscv-gee stamps
Makefile.in build-gdb-newl ib configure scv-gdb test
README .md build-newlib regr risev-glibe
build-binutils-newlib build-newlib-nano r riscv-binutils riscv-newlib
MBP:riscv-gnu-toolchain leslielaw$ help

GNU bash, version 3.2.57(1)-release (x86_64-apple-darwin2d)

e shell commands are defined internally. Type "help’ to see this list.

help name' to find out more about the function “name
info bash' to find out more about the shell in general.
‘man -k' or ‘info' to find out more about commands not in this list.

tar (*) next to a nome means that the commond is disabled.

JOB_SPEC [&] ((expression))
. filename [arguments] B
[arg...] (L expression 1]
alias [-p] [name[=value] ...] bg [job_spec ...]
bind [-1pvsPVS] [-m keymap] [-f i break [n]
builtin [shell-builtin [arg ...]] caller [EXPR]
case WORD in [PATTERN [I PATTERN]. cd [-LI-P] [dir]
command [-pVv] command [arg ...] compgen [-abcdefgjksuv] [-o option
complete [-abcdefgjksuv] [-pr] [-o continue [n]
1ar dirs [-clpv] [+N] [-N]
disown [-h] [-ar] [jobspec echo [-neE] [arg ..
enable [-pnds] [-a] [-f filename] eval [arg ...]
exec [-cl] [-a name] file [redirec exit [n]
export [-nf] [name[=value] r false
fg [job_spec]
for NAME [in WORDS ... for (C expl; exp2; exp3)); do COM
function NAME { COMMANDS ; } or NA getopts optstring name [arg]
hash [-1r] [-p pathname] [-dt] [na help [-s] [pattern
history [-c] [-d offset] [n] or hi if COMMANDS; then COMMANDS; [elif
jobs [-lnprs] [jobspec ...] or job kill [-s sigspec | -n signum | -si
let arg [arg ...] local name[=value] ...
Logout popd [+N | -N] [-n]
printf [-v var] format [arguments] pushd [dir | +N | -N] [-n]
read [-ers] [-u fd] [-t timeout] [
. return [n]

;] do €0 set [--abefhkmnptuvxBCHP] [-o opti
shopt [-pasu] [-o long-option] opt
suspend [-f]
time [-p] PIPELINE
trap [-1p] [arg signal_spec ...]
type [-afptP] name [name .

et [-afFirtx] [-p] name[=valu ulimit [-SHacdfilmnpgstuvx] [Limit
umask [-p] [-5] [mode] unalias [-a] name [name
unset [-f] [-v] [name ...] until COMMANDS; do COMMAND:
varigbles - Some varicble names an wait [n]
while COMMANDS; do COMMANDS; done { COMMANDS ; }
Leslies-MBP:riscv-gnu-toolchain leslielaw$

Figure 4.7

Page 15 of 20

ELEC S411F Final Report 12419115

While the toolchain as known as the cross compiler is installed form Github, it is ready to build
the RISC-V environment and compile the GCC. The time used to compile will be affected by
the GCC file.

4.5 Compile GCC

[] ™ riscv-gnu-toolchain — -bash — 158x35

Leslies-MBP:riscv-gnu-toolchain leslielaw$./configure --prefix=/opt/riscv

checking for gcc... geco

checking whether the C compiler works... yes

checking for C compiler default output file name... a.out

checking for suffix of executables...

checking whether we are cross compiling... no

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes

checking whether gcc accepts -g... yes

checking for gcc option to accept IS0 CB9... none needed

checking for grep that handles long lines and -e... fusr/bin/grep

checking for fgrep... fusr/bin/grep -F

checking for grep that handles long lines and -e... (cached) fusr/bin/grep

checking for bash...

checking for

checking for mpfr_init in -lmpfr.

checking for mpc_init2 in -lmpc..

checking for curl... fusr/bin/cur

checking for

checking for a

configure: creating ./config.status

config.status: creating Makefile

config.status: creating scripts/wrapper/awk/awk

config.status: creating scripts/wrapper/sed/sed

Leslies-MBP:riscv-gnu-toolchain leslielaw$ sudo make

Password:

mkdir -p fopt/riscv/.test 11 %\
({echo "Sorry, you don't have permission to write to" \
"'Jopt/riscy', use --prefix to specify™ \
"another path, or use 'sudo make®' if you *REALLY* want to"
“install into 'Jopt/riscv'” && exit 1)

rm -r fopt/riscv/.test

mkdir -p stamps/ &% touch stomps/check-write-permission

rm -rf stamps/build-binutils-newlib build-binutils-newlib

midir build-binutils-newlib

Figure 4.8

Figure 4.8 showing the compile process without editing the GCC file. Once the compiling done,
the RISC-V operating environment should be ready to use. The compiling is a long process.
After the first compiling done, the entire emulator file needs to be completely removed for

another test.

Page 16 of 20

ELEC S411F Final Report 12419115

5 Results and Discussion

5.1 GCC Compiling Result

RISC-V 32-bit 64-bit
Original GCC 32 mins 54 sec 44 mins 55 sec
Optimized GCC 30 mins 38 sec 41 mins 32 sec
Table 5.1

Table 5.1 showing the time used in compiling GCC in both 32-bit and 64-bit RISC-V setting
with the original one and the optimized one. Since the compile time is very long, the time
recorded is not 100% accurate, but the different is enough for comparison. For 32-bit RISC-V,
the time used has decreased 6.68% which saved 2 minutes 16 second. For 64-bit RISC-V, the

time used has decreased 7.57% which saved 3 minutes 23 second.

The data showed that the section header in an ELF file will affect the file execution order. The
section order can be customized for different usage. The time different on a long-time
consuming task will be more obvious. The lightweight GCC file make the compile time a bit

shorter for building a RSIC-V environment.

Page 17 of 20

ELEC S411F Final Report 12419115

6 Conclusion

The result on implementing a new optimized ELF file in RISC-V environment is as expected.
The time used on compiling GCC to build RISC-V environment is decreased after using a
lightweight ELF file. If doing the same thing to other ELF file for other situation in RISC-V

environment, the noticeable improvement may help the future RISC-V development.

RISC-V is really a revolutionary ISA. Since it is still under development, everyone can have
an opportunity to learn computer architecture from studying RISC-V. Design and make a CPU

or OS is no longer exclusive for leading semiconductor and technology company.

Page 18 of 20

ELEC S411F Final Report 12419115

7 References

[1]

[2]

[3]

[4]

[5]

E. Blem, J. Menon, and K. Sankaralingam, “Power struggles: Revisiting the RISC vs.
CISC debate on contemporary ARM and x86 architectures,” 2013 IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA), 2013.
“GCC and Make,” GCC and Make - A Tutorial on how to compile, link and build C/C++
applications. [Online]. Available: https://www3.ntu.edu.sg/home/ehchua/programming/
cpp/gcc_make.html. [Accessed: 13-Jun-2021].

J. Shepard, “RISC-V vs. ARM vs. x86 — What's the difference?,” Microcontroller Tips.
[Online]. Available: https://www.microcontrollertips.com/risc-v-vs-arm-vs-x86-whats-
the-difference/. [Accessed: 13-Jun-2021].

L. Lupori, V. Rosario, and E. Borin, “Towards a High-Performance RISC-V Emulator,”
2018 Symposium on High Performance Computing Systems (WSCAD), 2018.

M. Poorhosseini, W. Nebel, and K. Gruttner, “A Compiler Comparison in the RISC-V
Ecosystem,” 2020 International Conference on Omni-layer Intelligent Systems (COINS),
2020.

Page 19 of 20

ELEC S411F Final Report

12419115

8 Appendix

[1]

[2]

[3]

[4]

RISC-V Toolchain for macOS (Homebrew)
URL: https://github.com/riscv/homebrew-riscv

RISC-V GNU Compiler Toolchain
URL.: https://github.com/riscv/riscv-gnu-toolchain

64-bit ELF Object File Specification (Draft Version 2.5)
URL: https://irix7.com/techpubs/007-4658-001.pdf

Homebrew

URL: https://brew.sh

Page 20 of 20

	1 Introduction
	1.1 Project Objectives
	1.2 Organization of the Report

	2 Literature Review
	2.1 Compete the x86 and ARM
	2.2 RISC-V Emulator Development
	2.3 Low Performance Emulator
	2.4 GCC Compiler

	3 Methodology
	3.1 Read and Write ELF file
	3.2 GNU Compiler Toolchain
	3.3 64-bit RISC-V Linux on QEMU

	4 Implementation
	4.1 Read ELF on Terminal
	4.2 Read and Write ELF Program
	4.3 Section Header in ELF Files
	4.4 Building RISC-V Environment
	4.5 Compile GCC

	5 Results and Discussion
	5.1 GCC Compiling Result

	6 Conclusion
	7 References
	8 Appendix

