

ELEC S411F 2020/21

Electronic and Computer Engineering Project

Final Report

Implementation of a New
Executable and Linkable Format for RISC-V

Project Number: A01

Student Name: Law Tsz Wang Leslie (12419115)

Supervisor: Dr. Angus Wong

Submission Date: 13 June 2021

ELEC S411F Final Report 12419115

Page 2 of 20

Declaration of Originality

I, Law Tsz Wang Leslie, declare that this report and the work reported herein was composed

by and originated entirely from me. This report has not been submitted in any form for another

degree or diploma at any university or other institute of tertiary education. Information derived

from the published and unpublished work of others has been acknowledged in the text and a

list of references is given in the reference section.

13 June 2021

ELEC S411F Final Report 12419115

Page 3 of 20

Abstract

Since RISC-V is becoming a revolutionary instruction set architecture (ISA), many technology

companies have developed a strong interest in this ISA, and then invest resources for

development. RISC-V will change the ecology of the entire computer architecture industry.

This project is to design a lightweight and dynamic executable and linkable format (ELF) file

in order to have a more efficient file linking and execution. Then, implement the modified ELF

file to RISC-V environment, to better support the future RISC-V CPU and OS development.

The GCC file is chosen to be optimized for testing that modify an ELF file can get improvement

when building a RISC-V operating environment. The result showed that the optimized GNU

C Compiler (GCC) file can compile almost 10% faster than the original one. It also means that

the ELF file act as a main character between operating system and ISA.

ELEC S411F Final Report 12419115

Page 4 of 20

Table of Content

1 Introduction.. 6

1.1 Project Objectives .. 6

1.2 Organization of the Report... 6

2 Literature Review ... 7

2.1 Compete the x86 and ARM ... 7

2.2 RISC-V Emulator Development .. 7

2.3 Low Performance Emulator ... 8

2.4 GCC Compiler ... 8

3 Methodology .. 9

3.1 Read and Write ELF file .. 9

3.2 GNU Compiler Toolchain.. 9

3.3 64-bit RISC-V Linux on QEMU.. 10

4 Implementation .. 11

4.1 Read ELF on Terminal... 11

4.2 Read and Write ELF Program .. 12

4.3 Section Header in ELF Files .. 14

4.4 Building RISC-V Environment.. 15

4.5 Compile GCC... 16

5 Results and Discussion .. 17

5.1 GCC Compiling Result .. 17

6 Conclusion ... 18

7 References .. 19

8 Appendix .. 20

ELEC S411F Final Report 12419115

Page 5 of 20

List of Figures

Figure 4.1 Result on “readelf” of GCC 11

Figure 4.2 Java program and result – Read ELF 12

Figure 4.3 Java program and result – Write ELF 13

Figure 4.4 Cover page of “64-bit ELF Object File Specification” 13

Figure 4.5 First 5 section headers of GCC 14

Figure 4.6 Help instruction and update process of Homebrew 15

Figure 4.7 Content of the GNU Compiler Toolchain 15

Figure 4.8 Screenshot when compiling GCC 16

List of Tables

Table 4.1 ELF-64 Data Types 13

Table 4.2 ELF-64 Header Structure 14

Table 5.1 Compile Time Result 17

ELEC S411F Final Report 12419115

Page 6 of 20

1 Introduction

As the technology nowadays becomes more complex and more connected, the interoperability

between inventors and consumers has become more important. Global standards can make the

interoperability easier and more convenient, thereby driving innovation at the basic platform

level.

RISC-V is a free and open instruction set architecture (ISA) which still under development.

RISC-V means the fifth edition of reduced instruction set computer (RISC) architecture. It is

driven through open standard collaboration of global developers, and aims to achieve freedom

of design in all domains and industries, and consolidate the strategic foundation of

semiconductors.

Executable and Linkable Format (ELF) is an standard, flexible and cross-platform object files

participate in program linking and execution which is a binary file format commonly found in

in Unix-like systems. Since the bit “zero-one” in computer system are like the DNA molecules

of the organism, ELF should be the general structure of the cell. ELF supports different

endianness and address-sizes, and not requires specific CPU or ISA. Therefore, implementing

an optimized ELF may improve the development for RISC-V.

1.1 Project Objectives

This project is aims to modify ELF files so as to have a more efficient file linking and execution

in RISC-V environment, and hopefully can participate in a very small little part of the RISC-

V development.

1.2 Organization of the Report

The report is begin with section 2, the background observation of RISC-V and ELF. Some

literature will be reviewed for reference on the further work on RISC-V environment. After

understanding the development of RISC-V, section 3 is the methodology is listing in detail to

clearly describe what will be done. Section 4 is the working process and some screenshot of

the work. The testing and work result of section 4 and the further discussion is showed in

section 5. The section 6 is the conclusion of the project.

ELEC S411F Final Report 12419115

Page 7 of 20

2 Literature Review

RISC-V is an ISA which not optimised for any particular target, so it is suitable for all

computing purposes. It is also a simple load-store architecture which can be divided into two

parts, base ISA and optional extensions which means RISC-V is restricted to contain minimal

instructions set but also support extensive customisation.

2.1 Compete the x86 and ARM

Comparing to X86 and ARM, the world’s most famous ISA for PC and mobile. RISC-V are

free and no need to pay for the IP license fee [3]. It is simpler and smaller than other ISAs, and

support modularisation with multiple standard extensions. The high stability due to fixed base

ISA and first extension let the developers only need to update or change the extensions. And,

due to high extensibility, specific functions can be added by extensions. So, RISC-V may have

a good future to compete the x86 and ARM.

In the 1980s, chip size and processor design complexity were the main limiting factors, while

desktop computers and servers completely dominated the computing industry [1]. Today,

energy efficiency are the main design constraints, and the computing industry is very different:

the growth of smartphones or tablets running ARM exceeds that of desktops or laptops running

x86. In addition, the traditional low-power ARM is entering the high-performance computer

market, while the traditional high-performance x86 is entering the low-power mobile device

market. Therefore, the ISA performance and energy efficiency is becoming more and more

important.

2.2 RISC-V Emulator Development

RISC-V is an open and free ISA, originally developed by the University of California, and now

maintained by the RISC-V Foundation, with a few companies supporting its development [4].

It is a small RISC-based architecture that divided into multiple modules supporting floating-

point calculations, vector operations and atomic operations. Each module focuses on different

future computing goals, such as IoT embedded devices and cloud servers.

The rapid growth and adoption of RISC-V is attracting worldwide attention. So far, Linux

kernel, GCC, Clang all support it. However, the performance of all current RISC-V simulators

ELEC S411F Final Report 12419115

Page 8 of 20

is very poor. Having a high-performance RISC-V emulator suitable for common architectures,

x86 and ARM, in order to simplify software deployment, not only promotes its adoption and

testing, but also showcases it as a useful virtual architecture. A way to implement a high-

performance simulator is to use dynamic binary conversion (DBT), a technique for

dynamically selecting and converting code regions during simulation [4].

This technology has been used to implement fast virtual machines (VM), simulators, debuggers,

and high-level language VMs [4]. The DBT engine usually interprets the code first, and then

after translating all the hot areas, most of the time is spent executing the translation area.

2.3 Low Performance Emulator

In ISA design, RISC-V has not reached a mature and stable state until now. Physically, there

are several open source RISC-V CPU designs available. Although open source design can

enable mass production, this type of design is still under research and experimentation, so there

are currently few platforms that implement RISC-V architecture [4]. It usually takes some time

to realize that the hardware of the new ISA is widely available. Until then, simulation plays a

vital role, it can use the new ISA without a physical CPU available.

The main job of the ISA emulator is to convert client instructions into host instructions. The

goal is to make the host execute the client's instructions. Although there are already some

RISC-V simulators available, such as Spike and QEMU, they cannot achieve close to native

performance, which limits their performance, so they are usually used in situations where

performance requirements are not high.

2.4 GCC Compiler

GNU Compiler Collection (GCC) is the traditional compiler for most embedded systems

because it supports many different ISAs on the back end. It supports many embedded

processors and microcontrollers, and its status as the official GNU/Linux compiler is due to

the open source model and support from the GNU/Linux community. Also for RISC-V, it is

the first default compiler available [5].

ELEC S411F Final Report 12419115

Page 9 of 20

3 Methodology

This project is using Java in programming for creating and modify the ELF file. In system

programing, a Java SE Development Kit 16 is used for implementation of the Java platform

function, integrated development environment for Java and other related function in Shell

script. When emulating RISC-V environment, the GNU Compiler Toolchain recommended by

the RISC-V Foundation is the main character.

3.1 Read and Write ELF file

ELF file can be found in any OS. Command line on Windows or Terminal on macOS provide

an easiest way to read the ELF file information of different system or complier file. The

command line program will show the ELF header, section header and program header of the

ELF file. Those information will tells the system how the ELF file creating a process image.

In order to show the above information in the binary form, a simple Java program is needed.

The program can read the byte inside the ELF file, then print out in hexadecimal form which

is easier to read and analysis. This program involves the conversion between the byte of the

file and the binary code, as well as the conversion between binary and hexadecimal string.

As we can read the ELF in customise form, a separate program can also write a whole new

ELF file by converting the information string to hexadecimal code, then convert it to binary

code and write into a newly created file.

3.2 GNU Compiler Toolchain

The RISC-V foundation recommended the RISC-V GNU Compiler Toolchain which is

avalible on Github. This toolchain is the RISC-V C and C++ cross-compiler. It supports two

build modes: a generic ELF/Newlib toolchain and a more sophisticated Linux-ELF/glibc

toolchain.

The original GNU C Compiler (GCC) is developed from the GNU project to create a complete

Unix-like operating system as free software, to promote freedom and cooperation among

computer users and programmers.

ELEC S411F Final Report 12419115

Page 10 of 20

GCC has grown over times to support many different programing languages such as C (gcc),

C++ (g++), Java (gcj) which is now referred to as "GNU Compiler Collection". The GNU

Compiler Toolchain is for developing applications and writing operating systems which

include GCC, GNU Make, GNU Binutils, GNU Debugger (GDB), GNU Autotools and GNU

Bison [2].

3.3 64-bit RISC-V Linux on QEMU

As the project is worked on macOS environment, a QEMU, a generic and open-source machine

emulator, is needed to emulate the RISC-V environment. Booting a Linux on RISC-V QEMU

can create an environment to test the customized ELF file since ELF is widely used in Linux

and other Linux-like system, and Linux is suitable to run on RISC-V ISA.

ELEC S411F Final Report 12419115

Page 11 of 20

4 Implementation

The implementation is doing on a Macbook Pro with macOS 11.4. The test file used is the

GCC file from GNU Compiler Toolchain.

4.1 Read ELF on Terminal

Figure 4.1

ELEC S411F Final Report 12419115

Page 12 of 20

Figure 4.1 showing that the function readelf can list out all the information of an ELF file,

include ELF header, section header and program header. In the ELF header, the first line

showed the magic byte “7f 45 4c 46” which mean “\x7fELF”. It also showed the class and

version of the ELF format, and the size of the section and program header.

4.2 Read and Write ELF Program

Figure 4.2

Figure 4.2 is the Java program and result of reading ELF files. To read the byte of an ELF file

and print in a right way, the program needs to know the length of each field, for example the

magic byte is an unsigned data type which has a length of 16 bytes. Those figures can be found

on the document called ELF Object File Specification (figure 4.3) by Silicon Graphics. The

document showed the data type, header structure and the detail of each field of information

(table 4.1).

ELEC S411F Final Report 12419115

Page 13 of 20

Figure 4.3

Table 4.1

Figure 4.4

ELEC S411F Final Report 12419115

Page 14 of 20

Figure 4.4 is the Java program and result of writing ELF files. It provides a way to create a

customized ELF file from zero. Same as reading, the program can assign the byte into the

correct position in each header which is following the specification sheet on table 4.2.

Table 4.2

4.3 Section Header in ELF Files

Figure 4.5

Figure 4.5 showing the first 5 fields in the section header. Each field is containing the content

to be execute. Changing their order can make the data mapping in memory more efficient. If

deleting the unused section, the ELF file can be more light-weighted. After analysis the section

header of the GCC file, the writing ELF file program can be used to create the optimized ELF

file. The new GCC file is ready for replacing the original one.

ELEC S411F Final Report 12419115

Page 15 of 20

4.4 Building RISC-V Environment

Before building a RISC-V environment, Homebrew is needed which is a free and open-source

software package management system that simplifies the installation of software on macOS as

well as Linux. Figure 4.6 showing the help instruction and update process of Homebrew. Then,

installing the RISC-V GNU Compiler Toolchain using Homebrew. Figure 4.7 showing the

content of the toolchain.

Figure 4.6

Figure 4.7

ELEC S411F Final Report 12419115

Page 16 of 20

While the toolchain as known as the cross compiler is installed form Github, it is ready to build

the RISC-V environment and compile the GCC. The time used to compile will be affected by

the GCC file.

4.5 Compile GCC

Figure 4.8

Figure 4.8 showing the compile process without editing the GCC file. Once the compiling done,

the RISC-V operating environment should be ready to use. The compiling is a long process.

After the first compiling done, the entire emulator file needs to be completely removed for

another test.

ELEC S411F Final Report 12419115

Page 17 of 20

5 Results and Discussion

5.1 GCC Compiling Result

RISC-V 32-bit 64-bit

Original GCC 32 mins 54 sec 44 mins 55 sec

Optimized GCC 30 mins 38 sec 41 mins 32 sec

Table 5.1

Table 5.1 showing the time used in compiling GCC in both 32-bit and 64-bit RISC-V setting

with the original one and the optimized one. Since the compile time is very long, the time

recorded is not 100% accurate, but the different is enough for comparison. For 32-bit RISC-V,

the time used has decreased 6.68% which saved 2 minutes 16 second. For 64-bit RISC-V, the

time used has decreased 7.57% which saved 3 minutes 23 second.

The data showed that the section header in an ELF file will affect the file execution order. The

section order can be customized for different usage. The time different on a long-time

consuming task will be more obvious. The lightweight GCC file make the compile time a bit

shorter for building a RSIC-V environment.

ELEC S411F Final Report 12419115

Page 18 of 20

6 Conclusion

The result on implementing a new optimized ELF file in RISC-V environment is as expected.

The time used on compiling GCC to build RISC-V environment is decreased after using a

lightweight ELF file. If doing the same thing to other ELF file for other situation in RISC-V

environment, the noticeable improvement may help the future RISC-V development.

RISC-V is really a revolutionary ISA. Since it is still under development, everyone can have

an opportunity to learn computer architecture from studying RISC-V. Design and make a CPU

or OS is no longer exclusive for leading semiconductor and technology company.

ELEC S411F Final Report 12419115

Page 19 of 20

7 References

[1] E. Blem, J. Menon, and K. Sankaralingam, “Power struggles: Revisiting the RISC vs.

CISC debate on contemporary ARM and x86 architectures,” 2013 IEEE 19th

International Symposium on High Performance Computer Architecture (HPCA), 2013.

[2] “GCC and Make,” GCC and Make - A Tutorial on how to compile, link and build C/C++

applications. [Online]. Available: https://www3.ntu.edu.sg/home/ehchua/programming/

cpp/gcc_make.html. [Accessed: 13-Jun-2021].

[3] J. Shepard, “RISC-V vs. ARM vs. x86 – What's the difference?,” Microcontroller Tips.

[Online]. Available: https://www.microcontrollertips.com/risc-v-vs-arm-vs-x86-whats-

the-difference/. [Accessed: 13-Jun-2021].

[4] L. Lupori, V. Rosario, and E. Borin, “Towards a High-Performance RISC-V Emulator,”

2018 Symposium on High Performance Computing Systems (WSCAD), 2018.

[5] M. Poorhosseini, W. Nebel, and K. Gruttner, “A Compiler Comparison in the RISC-V

Ecosystem,” 2020 International Conference on Omni-layer Intelligent Systems (COINS),

2020.

ELEC S411F Final Report 12419115

Page 20 of 20

8 Appendix

[1] RISC-V Toolchain for macOS (Homebrew)

URL: https://github.com/riscv/homebrew-riscv

[2] RISC-V GNU Compiler Toolchain

URL: https://github.com/riscv/riscv-gnu-toolchain

[3] 64-bit ELF Object File Specification (Draft Version 2.5)

URL: https://irix7.com/techpubs/007-4658-001.pdf

[4] Homebrew

URL: https://brew.sh

	1 Introduction
	1.1 Project Objectives
	1.2 Organization of the Report

	2 Literature Review
	2.1 Compete the x86 and ARM
	2.2 RISC-V Emulator Development
	2.3 Low Performance Emulator
	2.4 GCC Compiler

	3 Methodology
	3.1 Read and Write ELF file
	3.2 GNU Compiler Toolchain
	3.3 64-bit RISC-V Linux on QEMU

	4 Implementation
	4.1 Read ELF on Terminal
	4.2 Read and Write ELF Program
	4.3 Section Header in ELF Files
	4.4 Building RISC-V Environment
	4.5 Compile GCC

	5 Results and Discussion
	5.1 GCC Compiling Result

	6 Conclusion
	7 References
	8 Appendix

